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Abstract Recently, Udwadia (Proc. R. Soc. Lond. A
2003:1783–1800, 2003) suggested to derive tracking con-
trollers for mechanical systems with redundant degrees-of-
freedom (DOFs) using a generalization of Gauss’ principle
of least constraint. This method allows reformulating con-
trol problems as a special class of optimal controllers. In this
paper, we take this line of reasoning one step further and
demonstrate that several well-known and also novel non-
linear robot control laws can be derived from this generic
methodology. We show experimental verifications on a Sar-
cos Master Arm robot for some of the derived controllers.
The suggested approach offers a promising unification and
simplification of nonlinear control law design for robots
obeying rigid body dynamics equations, both with or with-
out external constraints, with over-actuation or underactua-
tion, as well as open-chain and closed-chain kinematics.
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1 Introduction

The literature on robot control with redundant degrees-of-
freedom (DOFs) has introduced many different approaches
of how to resolve kinematic redundancy in complex robots
and how to combine redundancy resolution with appropri-
ate control methods (e.g., see Nakanishi et al. 2005 for an
overview). For instance, methods can be classified to operate
out of velocity-based, acceleration-based, and force-based
principles, they can focus on local or global redundancy res-
olution strategies (Baillieul and Martin 1990), and they can
have a variety of approaches how to include optimization
criteria to maintain control in the null space of a movement
task. When studying the different techniques, it sometimes
appears that they were created from ingenious insights of the
original researchers, but that there is also a missing thread
that links different techniques to a common basic principle.

Recently, Udwadia (2003) suggested a new interpretation
of constrained mechanics in terms of tracking control prob-
lem, which was inspired by results from analytical dynamics
with constrained motion. The major insight is that tracking
control can be reformulated in terms of constraints, which
in turn allows the application of a generalization of Gauss’
principle of least constraint1 (Udwadia and Kalaba 1996;
Bruyninckx and Khatib 2000) to derive a control law. This
insight leads to a specialized point-wise optimal control
framework for controlled mechanical systems. While it is
not applicable to non-mechanical control problems with ar-
bitrary cost functions, it yields an important class of opti-

1Gauss’ principle least constraint (Udwadia and Kalaba 1996) is a gen-
eral axiom on the mechanics of constrained motions. It states that if a
mechanical system is constrained by another mechanical structure the
resulting acceleration ẍ of the system will be such that it minimizes
(ẍ − M−1F)T M−1(ẍ − M−1F) while fulfilling the constraint.
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mal controllers, i.e., the class where the problem requires
task achievement under minimal squared motor commands
with respect to a specified metric. In this paper, we develop
this line of thinking one step further and show that it can
be used as a general way of deriving robot controllers for
systems with redundant DOFs, which offers a useful unifi-
cation of several approaches in the literature. We discuss the
necessary conditions for the stability of the controller in task
space if the system can be modeled with sufficient precision
and the chosen metric is appropriate. For assuring stability
in configuration space further considerations may apply. To
exemplify the feasibility of our framework and to demon-
strate the effects of the weighting metric, we evaluate some
of the derived controllers on an end-effector tracking task
with an anthropomorphic robot arm.

This paper is organized as follows: firstly, a optimal con-
trol framework based on (Udwadia 2003) is presented and
analyzed. Secondly, we discuss different robot control prob-
lems in this framework including joint and task space track-
ing, force and hybrid control. We show how both established
and novel controllers can be derived in a unified way. Fi-
nally, we evaluate some of these controllers on a Sarcos
Master Arm robot.

2 A unifying methodology for robot control

A variety of robot control problems can be motivated by
the desire to achieve a task accurately while minimizing the
squared motor commands, e.g., we intend to track a trajec-
tory with minimum generated torques. Such problems can
be formalized as a type of minimum effort control. In this
section, we will show how the robot dynamics and the con-
trol problem can be brought into a general form which, sub-
sequently, will allow us to compute the optimal control com-
mands with respect to a desired metric. We will augment this
framework such that we can ensure the necessary conditions
for stability both in the joint space of the robot as well as in
the task space of the problem.

2.1 Formulating robot control problems

We assume the well-known rigid-body dynamics model of
manipulator robotics with n degrees of freedom given by
the equation

u = M(q)q̈ + C(q, q̇) + G(q), (1)

where u ∈ Rn is the vector of motor commands (i.e., torques
or forces), q, q̇, q̈ ∈ Rn are the vectors of joint position, ve-
locities and acceleration, respectively, M(q) ∈ Rn×n is the
mass or inertia matrix, C(q, q̇) ∈ Rn denotes centrifugal and
Coriolis forces, and G(q) ∈ Rn denotes forces due to gravity
(Yoshikawa 1990; Wit et al. 1996). At many points we will

write the dynamics equations as M(q)q̈ = u(q, q̇) + F(q, q̇)

where F(q, q̇) = −C(q, q̇) − G(q) for notational conve-
nience. We assume that a sufficiently accurate model of our
robot system is available.

A task for the robot is assumed to be described in form
of a constraint, i.e., it is given by a function

h(q, q̇, t) = 0 (2)

where h ∈ Rk with an arbitrary dimensionality k. For ex-
ample, if the robot is supposed to follow a desired trajec-
tory qdes(t) ∈ Rn, we could formulate it by h(q, q̇, t) =
q − qdes(t) = 0; this case is analyzed in detail in Sect. 3.1.
The function h can be considered a task function in the sense
of the framework proposed in (Samson et al. 1991).

We consider only tasks where (2) can be reformulated as

A(q, q̇,t)q̈ = b(q, q̇,t), (3)

which can be achieved for most tasks by differentiation
of (2) with respect to time, assuming that h is sufficiently
smooth. For example, our previous task, upon differentia-
tion, becomes q̈ = q̈des(t) so that A = I and b = q̈des(t).
An advantage of this task formulation is that non-holonomic
constraints can be treated in the same general way.

In Sect. 3, we will give task descriptions first in the gen-
eral form of (2), and then derive the resulting controller,
which is the linear in accelerations, as shown in (3).

2.2 Optimal control framework

Let us assume that we are given a robot model and a con-
straint formulation of the task as described in the previ-
ous section. In this case, we can characterize the desired
properties of the framework as follows: first, the task has
to be achieved perfectly, i.e., h(q, q̇, t) = 0, or equiva-
lently, A(q, q̇,t)q̈ = b(q, q̇,t), holds at all times. Second,
we intend to minimize the control command with respect
to some given metric, i.e., J (t) = uT N(t)u, at each instant
of time, with positive semi-definite matrix N(t). The solu-
tion to this point-wise optimal control problem (Spo 1984;
Spong et al. 1986) can be derived from a generalization of
Gauss’ principle, as originally suggested in (Udwadia 2003).
It is also a generalization of the propositions in (Udwadia
and Kalaba 1996; Bruyninckx and Khatib 2000). We for-
malize this idea in the following proposition.

Proposition 1 The class of controllers which minimizes

J (t) = uT N(t)u, (4)

for a mechanical system M(q)q̈ = u(q, q̇) + F(q, q̇) while
fulfilling the task constraint

A(q, q̇,t)q̈ = b(q, q̇,t), (5)
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is given by

u = N−1/2(AM−1N−1/2)+(b − AM−1F), (6)

where D+ denotes the pseudo-inverse for a general ma-
trix D, and D1/2 denotes the symmetric, positive definite ma-
trix for which D1/2D1/2 = D.

Proof By defining z = N1/2u = N1/2(Mq̈ − F), we obtain
the accelerations q̈ = M−1N−1/2(z + N1/2F). Since the task
constraint Aq̈ = b has to be fulfilled, we have

AM−1N−1/2z = b − AM−1F. (7)

The vector z which minimizes J (t) = zT z while fulfilling
equation (7), is given by z = (AM−1N−1/2)+(b−AM−1F),
and as the motor command is given by u = N−1/2z, the
proposition holds. !

The choice of the metric N plays a central role as it
determines how the control effort is distributed over the
joints. Often, we require a solution which has a kinematic
interpretation; such a solution is usually given by a met-
ric like N = (M · M)−1 = M−2. In other cases, the con-
trol force u may be required to comply with the principle
of virtual displacements by d’Alembert for which the metric
N = M−1 is more appropriate (Udwadia and Kalaba 1996;
Bruyninckx and Khatib 2000). In practical cases, one would
want to distribute the forces such that joints with stronger
motors get a higher workload which can also be achieved
by a metric such as N = diag(τ̂−2

1 , τ̂−2
2 , . . . , τ̂−2

n ) where the
nominal torques τ̂i are used for the appropriate distribution
of the motor commands. In Sect. 3, we will see how the
choice of N results in several different controllers.

2.3 Necessary conditions for stability

Up to this point, this framework has been introduced in an
idealized fashion neglecting the possibility of imperfect ini-
tial conditions and measurement noise. Therefore, we mod-
ify our approach slightly for ensuring stability. However,
the stability of this framework as well as most related ap-
proaches derivable form this framework cannot be shown
conclusively but only in special cases (Hsu et al. 1989;
Arimoto 1996). Therefore, we can only outline the neces-
sary conditions for stability, i.e., (i) the achievement of the
task which will be achieved through a modification of the
framework in Sect. 2.3.1 and (ii) the prevention of undesired
side-effects in joint-space. The later are a result of under-
constrained tasks, i.e., tasks where some degrees of freedom
of the robot are redundant for task achievements, can cause
undesired postures or even instability in joint-space. This
problem will be treated in Sect. 2.3.2.

2.3.1 Task achievement

Up to this point, we have assumed that we always have per-
fect initial conditions, i.e., that the robot fulfills the con-
straint in (3) at startup, and that we know the robot model
perfectly. Here, we treat deviations to these assumptions as
disturbances and add means of disturbance rejections to our
framework. This disturbance rejection can be achieved by
requiring that the desired task is an attractor, e.g., it could be
prescribed as a dynamical system in the form

ḣ(q, q̇, t) = fh(h, t), (8)

where h = 0 is a globally asymptotically stable equilibrium
point – or a locally asymptotically stable equilibrium point
with a sufficiently large region of attraction. Note that h
can be a function of robot variables (as in end-effector tra-
jectory control in Sect. 3.2) but often it suffices to choose
it as a function of the state vector (for example for joint-
space trajectory control as in Sect. 3.1). In the case of holo-
nomic tasks (such as tracking control for a robot arm), i.e.
hi(q, t) = 0, i = 1,2, . . . , k we can make use of a particu-
larly simple form and turn this task into an attractor

ḧi + δi ḣi + κih = 0, (9)

where δi and κi are chosen appropriately. We will make use
of this ‘trick’ in order to derive several algorithms. Obvi-
ously, different attractors with more desirable convergence
properties (and/or larger basins of attraction) can be ob-
tained by choosing fh appropriately.

If we have such task-space stabilization, we can assure
that the control law will achieve the task at least in a region
near to the desired trajectory. We demonstrate this issue in
the following proposition.

Proposition 2 If we can assure the attractor property of the
task h(q, q̇, t) = 0, or equivalently, A(q, q̇,t)q̈ = b(q, q̇,t),
and if our robot model is accurate, the optimal controller of
(6) is will achieve the task asymptotically.

Proof When combining the robot dynamics equation with
the controller, and after reordering the terms, we obtain

AM−1(Mq̈ − F) = (AM−1N−1/2)+(b − AM−1F). (10)

If we now premultiply the equation with D = AM−1N−1/2,
and noting that DD+D = D, we obtain Aq̈ = DD+b = b.
The equality follows because the original trajectory defined
by Aq̈ = b yields a consistent set of equations. If this equa-
tion describes an attractor, we will have asymptotically per-
fect task achievement. !

In some cases, such as joint trajectory tracking control
discussed in Sect. 3.1, Proposition 2 will suffice for a stabil-
ity proof in a Lyapunov sense (Yoshikawa 1990; Wit et al.
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Fig. 1 In the presence of disturbances or non-zero initial conditions,
stable task dynamics will not result in joint-space stability

1996). However, for certain tasks such as end-effector track-
ing control discussed in Sect. 3.1, this is not the case and sta-
bility can only be assured in special cases (Hsu et al. 1989;
Arimoto 1996).

2.3.2 Prevention of control problems in joint-space

Even if stability in task space can be shown, it is not imme-
diately clear whether the control law is stable in joint-space.
Example 1, illustrates a problematic situation where a redun-
dant robot arm achieves an end-effector tracking task and is
provably stable in task-space, but nevertheless also provably
unstable in joint-space.

Example 1 Let us assume a simple prismatic robot with
two horizontal, parallel links as illustrated in Fig. 1. The
mass matrix of this robot is a constant given by M =
diag(m1,0) + m21 where 1 denotes a matrix having only
ones as entries, and the additional forces are F = C +
G = 0. Let us assume the task is to move the end-effector
x = q1 + q2 along a desired position xdes, i.e., the task can
be specified by A = [1,1], and b = ẍdes + δ(ẋdes − ẋ) +
κ(xdes − x) after double differentiation and task stabiliza-
tion. While the task dynamics are obviously stable (which
can be verified using the constant Eigenvalues of the sys-
tem), the initial condition q1(t0) = xdes(t0) − q2(t0) would
result in both qi(t)’s diverging into opposite directions for
any non-zero initial velocities or in the presence of distur-
bances for arbitrary initial conditions. The reason for this
behavior is obvious: the effort of stabilizing in joint space is
not task relevant and would increase the cost.

While this example is similar to problems with non-
minimum phase nonlinear control systems (Isidori 1995),
the problems encountered are not the failure of the task con-
troller, but rather due to internal dynamics, e.g., hitting of
joint limits. From this example, we see that the basic general
framework of constrained mechanics does not always suffice
to derive useful control laws, and that it has to be augmented
to incorporate joint stabilization for the robot without affect-
ing the task achievement. One possibility is to introduce a
joint-space motor command u1 as an additional component
of the motor command u, i.e.,

u = u1 + u2(u1), (11)

where the first component u1 denotes an arbitrary joint-
space motor command for stabilization, while the second
component u2(u1) denotes the task-space motor command
generated with the previously explained equations. The task-
space component depends on the joint-space component as
it has to compensate for it in the range of the task space. We
can show that task achievement Aq̈ = b by the controller is
not affected by the choice of the joint-space control law u1.

Proposition 3 For any chosen joint stabilizing control law
u1 = f (q), the resulting task space control law u2(u1) en-
sures that the joint-space stabilization acts in the null-space
of the task achievement.

Proof When determining u2, we consider u1 to be part of
our additional forces in the rigid body dynamics, i.e., we
have F̃ = F + u1. We obtain u2 = N−1/2(AM−1N−1/2)+

(b − AM−1F̃) using Proposition 1. By reordering the com-
plete control law u = u1 + u2(u1), we obtain

u = u1 + N−1/2(AM−1N−1/2)+(b − AM−1(F + u1)),

= N−1/2(AM−1N−1/2)+(b − AM−1F)

+ [I − N−1/2(AM−1N−1/2)+AM−1]u1,

= N−1/2(AM−1N−1/2)+(b − AM−1F)

+ N−1/2[I − (AM−1N−1/2)+(AM−1N−1/2)]N1/2u1.

(12)

The task space is defined by N−1/2(AM−1N−1/2)+, and the
matrix N−1/2[I − (AM−1N−1/2)+(AM−1N−1/2)] makes
sure that the joint-space control law and the task space con-
trol law are N-orthogonal, i.e., the task accomplishment is
independent of the joint-space stabilization. !

Despite that the task is still achieved, the optimal control
problem is affected by the restructuring of our control law.
While we originally minimized J (t) = uT N(t)u, we now
have a modified cost function

J̃ (t) = uT
2 N(t)u2 = (u − u1)

T N(t)(u − u1), (13)

which is equivalent to stating that the complete control law
u should be as close to the joint-space control law u1 as
possible under task achievement.

This reformulation can have significant advantages if
used appropriately. For example, in a variety of applications
—such as using the robot as a haptic interface—a compen-
sation of the robot’s gravitational, coriolis and centrifugal
forces in joint space can be useful. Such a compensation can
only be derived when making use of the modified control
law. In this case, we set u1 = −F = C + G, which allows us
to obtain

u2 = N−1/2(AM−1N−1/2)+b, (14)
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which does not contain these forces, and we would have
a complete control law of u = C + G + N−1/2(AM−1 ×
N−1/2)+b.

2.4 Hierarchical extension

In complex high-dimensional systems, we can often have a
large number of tasks A1q̈ = b1, A2q̈ = b2, . . . , Anq̈ = bn

that have to be accomplished in parallel. These tasks of-
ten partially conflict, e.g., when the number of tasks ex-
ceeds the number of degrees of freedom or some of these
tasks cannot be achieved in combination with each other.
Therefore, the combination of these tasks into a single large
task is not always practical and, instead, the tasks need
prioritization, e.g., the higher the number of the task, the
higher its priority. Task prioritized control solutions have
been discussed in the literature (Nakamura et al. 1987;
Hollerbach and Suh 1987; Maciejewski and Klein 1985;
Hanafusa et al. 1981; Yamane and Nakamura 2003; Sentis
and Khatib 2004; Siciliano and Slotine 1991; Khatib et al.
2004; Sentis and Khatib 2005). Most previous approaches
were kinematic and discussed only a small, fixed number
of tasks; to our knowledge, (Sentis and Khatib 2004, 2005)
were among the first to discuss arbitrary task numbers and
dynamical decoupling, i.e., a different metric from our point
of view. The proposed framework allows the generalization
for arbitrary metrics and more general problems as will be
shown in Proposition 3. The prioritized motor command is
given by

u = u1 + u2(u1) + u3(u1 + u2)

+ · · · + un(u1 + · · · + un−1),

where un(u1 +· · ·+un−1) is the highest-priority control law
as a function of u1, . . . ,un−1 and cancels out all influence
u1 +· · ·+un−1 which prohibit the execution of its task. The
motor commands for each degree of freedom can be given
by the following Proposition:

Proposition 4 A set of hierarchically prioritized constraints
Ai q̈ = bi where i = 1,2, . . . , n represents the priority (here,
a higher number i represents a higher priority) can be con-
trolled by

u = u1 +
n∑

i=2

ui

(
i−1∑

k=1

uk

)

,

where ui (u$) = N−1/2(AiM−1N−1/2)+(b − AiM−1(F +
u$)). For any k < i, the lower-priority control law uk acts in
the null-space of the higher-priority control law ui and any
higher-priority control law ui cancels all parts of the lower-
priority control law uk which conflict with its task achieve-
ment.

Proof We first simply create the control laws u1 and u2(u1)

as described before and then make use of Proposition 3,
which proves that this approach is correct for n = 2. Let
us assume now that it is true for n = m. In this case, we
can consider ũ1 = u1 + u2 + · · · + um our joint-space con-
trol law and ũ2 = um+1 the task-space control law. If we
now make use of Proposition 3 again, we realize that ũ1 =
u1 + u2 + · · · + um acts in the null-space of ũ2 = um+1 and
that all components of u1,u2, . . . ,um which conflict with
um+1 will be canceled out. Therefore, the proposition also
holds true for n = m + 1. This proves the proposition by
induction. !

From the viewpoint of optimization, the control laws ob-
tained in Proposition 4 have a straightforward interpretation
like the combination of joint and task-space control laws:
each subsequent control law is chosen so that the control
effort deviates minimally from the effort created from the
previous control laws.

Example 2 Robot locomotion is a straightforward exam-
ple for such an approach. Traditionally, all tasks are often
meshed into one big tasks (Pratt and Pratt 1998). How-
ever, the most essential task is the balancing of the robot
to prevent accidents; it can, for instance, be achieved by
a balancing task A3q̈ = b3 similar to a spring-damper sys-
tem pulling the system to an upright position. Additionally,
the center of the torso should follow a desired trajectory
– unless the desired path would make the robot fall. This
gait generating task would be given by A2q̈ = b2. Addi-
tionally, we want to have joint-space stability as the uncon-
strained degrees of freedom such as the arms might other-
wise move all the time. The joint-space stabilization can be
expressed as a constraint A1q̈ = b1 pulling the robot towards
a rest posture. The combined motor command is now given
by u = u1 + u2(u1) + u3(u1 + u2) with the single control
laws are obtained by ui (u$) = N−1/2(AiM−1N−1/2)+(b −
AiM−1(F + u$)) with i = 1,2,3.

Ideas similar to Example 2 have been explored in (Ya-
mane and Nakamura 2003; Sentis and Khatib 2004, 2005;
Khatib et al. 2004) and we are currently working on apply-
ing this framework to locomotion similar to Example 2.

3 Robot control laws

The previously described framework offers a variety of ap-
plications in robotics—we will only focus on some the most
important ones in this paper. Most of these controllers which
we will derive are known from the literature, but often from
very different, and sometimes convoluted, building princi-
ples. In this section, we show how a large variety of control
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laws for different situations can be derived in a simple and
straightforward way by using the unifying framework that
has been developed hereto. We derive control laws for joint-
space trajectory control for both fully actuated and overactu-
ated “muscle-like” robot systems from our framework. We
also discuss task-space tracking control systems, and show
that most well-known inverse kinematics controllers are ap-
plications of the same principle. Additionally, we will dis-
cuss how the control of constrained manipulators through
impedance and hybrid control can be easily handled within
our framework.

3.1 Joint-space trajectory control

The first control problem we address is joint-space trajectory
control. We consider two different situations: (a) We control
a fully actuated robot arm in joint-space, and (b) we control
an overactuated arm. The case (b) could, for example, have
agonist-antagonist muscles as actuators similar to a human
arm.2

3.1.1 Fully actuated robot

The first case which we consider is the one of a robot arm
which is actuated at every degree of freedom. We have the
trajectory as constraint with h(q, t) = q(t) − qd(t) = 0. We
turn this constraint into an attractor constraint using the idea
in Sect. 2.3.1, yielding

(q̈ − q̈d) + KD(q̇ − q̇d) + KP (q − qd) = 0, (15)

where KD are positive-definite damping gains, and KP are
positive-definite proportional gains. We can bring this con-
straint into the form A(q, q̇)q̈ = b(q, q̇) with

A = I, (16)

b = q̈d + KD(q̇d − q̇) − KP (qd − q). (17)

Proposition 1 can be used to derive the controller. Using
(M−1N−1/2)+ = N1/2M as both matrices are of full rank,
we obtain

u = u1 + N−1/2(AM−1N−1/2)+(b − AM−1(F + u1)),

= M(q̈d + KD(q̇d − q̇) + KP (qd − q)) + C + G. (18)

Note that—not surprisingly—all joint-space motor com-
mands or virtual forces u1 always disappear from the con-
trol law and that the chosen metric N is not relevant—the
derived solution is unique and general. This equation is a
well-known text book control law, i.e., the Inverse Dynam-
ics Control Law (Yoshikawa 1990; Wit et al. 1996).

2An open topic of interest is to handle underactuated control systems.
This will be part of future work.

3.1.2 Overactuated robots

Overactuated robots, as they can be found in biological
systems, are inheritently different from the previously dis-
cussed robots. For instance, these systems are actuated by
several linear actuators, e.g., muscles that often act on the
system in form of opposing pairs. The interactions of the
actuators can be modeled using the dynamics equations of

Du = M(q)q̈ + C(q, q̇) + G(q), (19)

where D depends on the geometric arrangement of the actu-
ators. In the simple model of a two degree-of-freedom robot
with antagonistic muscle-like activation, it would be given
by

D =
[−l +l 0 0

0 0 −l +l

]
, (20)

where size of the entries Dij denotes the moment arm length
li and the sign of Dij whether its agonist (Dij > 0) or an-
tagonist muscle (Dij < 0). We can bring this equation into
the standard form by multiplying it with D+, which re-
sults in a modified system where M̃(q) = D+M(q), and
F̃(q, q̇) = −D+C(q, q̇) − D+G(q). If we express the de-
sired trajectory as in the previous examples, we obtain the
following controller

u = M̃1/2(AM̃−1/2)+(b − AM̃−1F̃), (21)

= D+M(q̈d + KD(q̇d − q̇) − KP (qd − q))

+ D+(C + G). (22)

While immediately intuitive, it noteworthy that this partic-
ular controller falls out of the presented framework in an
natural way. It is straightforward to extend Proposition 1 to
show that this is the constrained optimal solution to J (t) =
uT DN(t)Du at any instant of time.

3.2 End-effector trajectory control

While joint-space control of a trajectory q(t) is straight-
forward and the presented methodology appears to simply
repeat earlier results from the literature—although derived
from a different and unified perspective—the same cannot
be said about end-effector control where goal is to control
the position x(t) of the end-effector. This problem is generi-
cally more difficult as the choice of the metric N determines
the type of the resulting controller in an important way, and
as the joint-space of the robot often has redundant degrees
of freedom resulting in problems as already presented in
Example 1. In the following, we will show how to derive
different approaches to end-effector control from the pre-
sented framework, which will yield both established as well
as novel control laws.
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The task description is given by the end-effector trajec-
tory as constraint with h(q, t) = f(q(t)) − xd(t) = x(t) −
xd(t) = 0, where x = f(q) denotes the forward kinematics.
We turn this constraint into an attractor constraint using the
idea in Sect. 2.3.1, yielding

(ẍ − ẍd) + KD(ẋ − ẋd) + KP (x − xd) = 0, (23)

where KD are positive-definite damping gains, and KP are
positive-definite proportional gains. We make use of the dif-
ferential forward kinematics, i.e.,

ẋ = J(q)q̇, (24)

ẍ = J(q)q̈ + J̇(q)q̇. (25)

These equations allow us to formulate the problem in form
of constraints, i.e., we intend to fulfill

ẍd + KD(ẋd − ẋ) + KP (xd − x) = Jq̈ + J̇q̇, (26)

and we can bring this equation into the form A(q, q̇)q̈ =
b(q, q̇) with

A(q, q̇) = J, (27)

b(q, q̇) = ẍd + KD(ẋd − ẋ) + KP (xd − x) − J̇q̇. (28)

These equations determine our task constraints. As long as
the robot is not redundant J is invertible and similar to joint-
space control, we will have one unique control law. How-
ever, when J is not uniquely invertible the resulting con-
troller depends on the chosen metric and joint-space control
law.

3.2.1 Separation of kinematics and dynamics control

The choice of the metric N determines the nature of the con-
troller. A metric of particular importance is N = M−2 as this
metric allows the decoupling of kinematics and dynamics
control as we will see in this section. Using this metric in
Proposition 1, we obtain a control law

u = u1 + N−1/2(AM−1N−1/2)+(b − AM−1(F + u1)),

= MJ+(ẍd + KD(ẋd − ẋ) + KP (xd − x) − J̇q̇)

+ M(I − J+J)M−1u1 − MJ+JM−1F.

If we choose the joint-space control law u1 = u0 − F, we
obtain the control law

u = MJ+(ẍd + KD(ẋd − ẋ) + KP (xd − x) − J̇q̇)

+ M(I − J+J)M−1u0 + C + G. (29)

This control law is the combination of a resolved-accelera-
tion kinematic controller (Yoshikawa 1990; Hsu et al. 1989)

with a model-based controller and an additional null-space
term. Often, M−1u0 is replaced by a desired acceleration
term for the null-space stabilization. Similar controllers have
been introduced in (Park et al. 2002, 1995; Chung et al.
1993; Suh and Hollerbach 1987). The null-space term can
be eliminated by setting u0 = 0; however, this can result in
instabilities if there are redundant degrees of freedom. This
controller will be evaluated in Sect. 4.

3.2.2 Dynamically consistent decoupling

As noted earlier, another important metric is N = M−1 as
it is consistent with the principle of d’Alembert, i.e., the
resulting control force can be re-interpreted as mechanical
structures (e.g., springs and dampers) attached to the end-
effector; it is therefore called dynamically consistent. Again,
we use Proposition 1, and by defining F̃ = F + u1 obtain the
control law

u = u1 + N−1/2(AM−1N−1/2)+(b − AM−1F̃),

= u1 + M1/2(JM−1/2)T (JM−1JT )−1(b − JM−1F̃),

= u1 + JT (JM−1JT )−1(b − JM−1F̃),

= JT (JM−1JT )−1(ẍd + KD(ẋd − ẋ)

+ KP (xd − x) − J̇(q)q̇ + JM−1(C + G))

+ M(I − M−1JT (JM−1JT )−1J)M−1u1.

It turns out that this is another well-known control law sug-
gest in (Khatib 1987) with an additional null-space term.
This control-law is especially interesting as it has a clear
physical interpretation (Udwadia and Kalaba 1996; Bruyn-
inckx and Khatib 2000; Udwadia 2003): the metric used
is consistent with principle of virtual work of d’Alembert.
Similarly as before we can compensate for coriolis, cen-
trifugal and gravitational forces in joint-space, i.e., setting
u1 = C + G + u0. This yields a control law of

u = JT (JM−1JT )−1(ẍd + KD(ẋd − ẋ)

+ KP (xd − x) − J̇(q)q̇) + C + G

+ M[I − M−1JT (JM−1JT )−1J]M−1u0. (30)

The compensation of the forces C+G in joint-space is often
desirable for this metric in order to have full control over the
resolution of the redundancy as gravity compensation purely
in task space often results in postures that conflict with joint
limits and other parts of the robot.

3.2.3 Further metrics

Using the identity matrix as metric, i.e., N = I, punishes the
squared motor command without reweighting, e.g., with in-
ertial terms. This metric could be of interest as it distributes
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the “load” created by the task evenly on the actuators. This
metric results in a control law

u = (JM−1)+(ẍd + KD(ẋd − ẋ) + KP (xd − x) − J̇(q)q̇

+ JM−1(C + G)) + (I − (JM−1)+JM−1)u1. (31)

To our knowledge, this controller has not been presented in
the literature.

Another, fairly practical idea would be to weight the dif-
ferent joints depending on the maximal torques τmax,i of
each joint; this would result in a metric N = diag(τ−1

max,1, . . . ,

τ−1
max,n).

These alternative metrics may be particularly interesting
for practical application where the user wants to have more
control over the natural appearance of movement, and worry
less about the exact theoretical properties—humanoid robot-
ics, for instance, is one of such applications. In some cases,
it also may not be possible to have accurate access to com-
plex metrics like the inertia matrix, and simpler metrics will
be more suitable.

3.3 Controlling constrained manipulators: impedance &
hybrid control

Contact with outside objects alters the robot’s dynamics,
i.e., a generalized contact force FC ∈ R6 acting on the end-
effector changes the dynamics of the robot to

u = M(q)q̈ + C(q, q̇) + G(q) + JT FC. (32)

In this case, the interaction between the robot and the envi-
ronment has to be controlled. This kind of control can both
be used to make the interaction with the environment safe
(e.g., in a manipulation task) as well as to use the robot to
simulate a behavior (e.g., in a haptic display task). We will
discuss impedance control and hybrid control as examples
of the application of the proposed framework; however, fur-
ther control ideas such as parallel control can be treated in
this framework, too.

3.3.1 Impedance control

In impedance control, we want the robot to simulate the be-
havior of a mechanical system such as

Md(ẍd − ẍ) + Dd(ẋd − ẋ) + Pd(xd − x) = FC, (33)

where Md ∈ R6×6 denotes the mass matrix of a desired
simulated dynamical system, Dd ∈ R6 denotes the desired
damping, Pd ∈ R6 denotes the gains towards the desired po-
sition, and FC ∈ R6 the forces that result from this particular
dynamical behavior. Using (25) from Sect. 3.2, we see that

this approach can be brought in the standard form for tasks
by

MdJq̈ = FC − Md ẍd − Dd(ẋd − Jq̇)

− Pd(xd − f(q)) − Md J̇q̇.

Thus, we can infer the task description

A = MdJ,

b = FC − Md ẍd − Dd(Jq̇ − ẋd) (34)

− Pd(f(q) − xd) − Md J̇q̇,

and apply our framework for deriving the robot control law
as shown before.

Kinematic separation of simulated system and the manipu-
lator Similar as in end-effector tracking control, a practi-
cal metric is N = M−2 it basically separates the simulated
dynamic system from the physical structure of the manipu-
lator on a kinematic level. For simplicity, we make use of the
joint-space control law u1 = C + G + u0 similar as before.
This results in the control law

u = u1 + N−1/2(AM−1N−1/2)+(b − AM−1(F + u1)),

= M(MdJ)+(FC − Md ẍd − Dd(Jq̇ − ẋd)

− Pd(f(q) − xd) − Md J̇q̇)

+ C + G + (I − M(MdJ)+MdJM−1)u0. (35)

As (MdJ)+ = JT Md(MdJJT Md)−1 = J+M−1
d since Md is

invertible, we can simplify this control law to become

u = MJ+M−1
d (FC − Md ẍd − Dd(Jq̇ − ẋd)

− Pd(f(q) − xd)) − MJ+J̇q̇ + C + G

+ M(I − J+J)M−1u0. (36)

We note that ẍd = M−1
d (FC − Md ẍd − Dd(Jq̇ − ẋd) −

Pd(f(q) − xd)) is a desired acceleration in task-space. This
insight clarifies the previous remark about the separation of
the simulated system and the actual physical system: we
have a first system which describes the interaction with the
environment—and additionally we use a second, inverse-
model type controller to execute the desired accelerations
with our robot arm.

Dynamically consistent combination Similar as in end-
effector control, a practical metric is N = M−1 which com-
bines both the simulated and the physical dynamic systems
employing Gauss’ principle. For simplicity, we make use of
the joint-space control law u1 = C + G + u0 similar as be-
fore. This approach results into the control law
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u = u1 + N−1/2(AM−1N−1/2)+(b − AM−1(F + u1)),

= u1 + JT (JM−1JT )−1(b − AM−1(F + u1)),

= M1/2(MdJM−1/2)+(FC − Dd(Jq̇ − ẋd)

− Pd(f(q) − xd) − Md J̇q̇)

+ C + G + (I − M(MdJ)+MdJM−1)u0. (37)

As (MdJM−1/2)+ = M−1/2JT (JM−1JT )−1M−1
d since Md

is invertible, we can simplify this control law into

u = JT (JM−1JT )−1M−1
d (FC − Dd(Jq̇ − ẋd)

− Pd(f(q) − xd)) − MJ+J̇q̇ + C + G

+ (I − MJ+JM−1
)u0. (38)

We note that the main difference between this and the previ-
ous impedance control law is the location of the matrix M.

3.3.2 Hybrid control

In hybrid control, we intend to control the desired position
of the end-effector xd and the desired contact force exerted
by the end-effector Fd . Modern hybrid control approaches
are essentially similar to our introduced framework (Wit et
al. 1996). Both are inspired by constrained motion and use
this insight in order to achieve the desired task. In traditional
hybrid control, a natural or artificial, idealized holonomic
constraint φ(q, t) = 0 acts on our manipulator, and subse-
quently the direction of the forces is determined through the
virtual work principle of d’Alembert. We can make signif-
icant contributions here as our framework is a generaliza-
tion of the Gauss’ principle that allows us to handle even
non-holonomic constraints φ(q, q̇, t) = 0 as long as they are
given in the form

Aφ(q, q̇)q̈ = bφ(q, q̇). (39)

Aφ , bφ depend on the type of the constraint, e.g., for scle-
ronomic, holonomic constraints φ(q) = 0, we would have
Aφ(q, q̇) = Jφ and bφ(q, q̇) = −J̇φ q̇ with Jφ = ∂φ/∂q as in
(Wit et al. 1996). Additionally, we intend to exert the contact
force Fd in the task; this can be achieved if we choose the
joint-space control law

u1 = C + G + JT
φ Fd . (40)

From the previous discussion, this constraint is achieved by
the control law

u = u1 + N−1/2(AφM−1N−1/2)+(bφ − AφM−1(F + u1)),

(41)

= C + G + N−1/2(AφM−1N−1/2)+bφ

+ N−1/2(I − (AM−1N−1/2)+AM−1N−1/2)N1/2JT
φ Fd .

(42)

Note that the exerted forces act in the null-space of the
achieved tracking task; therefore both the constraint and the
force can be set independently.

4 Evaluations

The main contribution of this paper is the unifying method-
ology for deriving robot controllers. Each of the presented
controllers in this paper is a well founded control law which,
from a theoretical point of view, would not need require em-
pirical evaluations, particularly as most of the control laws
are already well-known from the literature and their sta-
bility properties have been explored before. Nevertheless,
it is useful to highlight one component in the suggested
framework, i.e., the impact of the metric N on the partic-
ular performance of a controller. For this purpose, we chose
to evaluate the three end-effector controllers from Sect. 3.2:
(i) the resolved-acceleration kinematic controller (with met-
ric N = M−2) in (29), (ii) Khatib’s operational space control
law (N = M−1) in (30), and (iii) the identity metric control
law (N = I) in (31).

As an experimental platform, we used the Sarcos Dex-
trous Master Arm, a hydraulic manipulator with an anthro-
pomorphic design shown in Fig. 2. Its seven degrees of free-
dom mimic the major degrees of freedom of the human arm,
i.e., there are three DOFs in the shoulder, one in the elbow
and three in the wrist. The robot’s end-effector was supposed
to track a planar “figure-eight (8)” pattern in task space at

Fig. 2 Sarcos Master Arm robot, as used for the evaluations on our
experiments
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Fig. 3 This figure shows the three end-effector trajectory controllers
tracking a “figure eight (8)” pattern at 8 seconds per cycle. On the left
is the x-z plane with the y-z plane on the right. All units are in meters

Fig. 4 The same three controllers tracking the same “figure eight (8)”
pattern at a faster pace of 4 seconds per cycle. The labels and units
remain the same as in Fig. 3

two different speeds. In order to stabilize the null-space tra-
jectories, we choose a PD control law in joint space which
pulls the robot towards a fixed rest posture, qrest, given by

u0 = M(KP 0(qrest − q) − KD0q̇).

Additionally we apply gravity, centrifugal and Coriolis force
compensation, such that u1 = u0 + C + G. For consistency,
all three controllers are assigned the same gains both for the
task and joint space stabilization.

Figure 3 shows the end-point trajectories of the three con-
trollers in a slow pattern of eight seconds per cycle “figure-
eight (8)”. Figure 4 shows a faster pace of four seconds per
cycle. All three controllers have similar end-point trajecto-
ries and result in fairly accurate task achievement. Each one
has an offset from the desired trajectory (thin black line),
primarily due to the imperfect dynamics model of the ro-

Table 1 This table shows the root mean squared error results of the
tracking achieved by the different control laws

Metric Slow RMS error [m] Fast RMS error [m]

N = M−2 0.0122 0.0130

N = M−1 0.0126 0.0136

N = I 0.0130 0.0140

Fig. 5 Joint space trajectories for the four major degrees of freedom,
i.e., shoulder flexion-extension (SFE), shoulder adduction-abduction
(SAA), humeral rotation (HR) and elbow flexion-extension (EBFE),
are shown here. Joint angle units are in radians. The labels are identical
to the ones in Fig. 3

bot. The root mean squared errors (RMS) between the ac-
tual and the desired trajectory in task-space for each of the
controllers are shown in Table 1.

While the performance of the three controllers is very
similar in task space, we did notice that the resolved-
acceleration kinematic controller (N = M−2) had a slight
advantage. The reason for this performance difference is
most likely due to errors in the dynamics model: the effect of
these errors is amplified by the inversion of the mass matrix
in the control laws given in (30), (31) while the decoupling
of the dynamics and kinematics provided by the controller
in (29) can be favorable as the effect of modeling errors is
not increased. More accurate model parameters of the ma-
nipulator’s rigid body dynamics would result in a reduction
of the difference between these control laws (observable in
Figs. 3 and 4) as we have confirmed in simulations.

Figure 5 illustrates how the joint space trajectories appear
for the fast cycle. Although end-point trajectories were very
similar, joint space trajectories differ significantly due to the
different optimization criteria of each control law, which
emphasizes the importance of the choice of the metric N.
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5 Conclusion

In this paper we presented an optimal control framework
which allows the development of a unified approach for de-
riving a number of different robot control laws for rigid body
dynamics systems. We demonstrated how we can make use
of both the robot model and a task description in order to
create control laws which are optimal with respect to the
squared motor command under a particular metric while
perfectly fulfilling the task at each instant of time. We have
discussed how to realize stability both in task as well as in
joint-space for this framework.

Building on this foundation, we demonstrated how a
variety of control laws—which on first inspection appear
rather unrelated to one another—can be derived using this
straightforward framework. The covered types of tasks in-
clude joint-space trajectory control for both fully actuated
and overactuated robots, end-effector trajectory control, im-
pedance and hybrid control.

The implementation of three of the end-effector trajec-
tory control laws resulting from our unified framework on
a real-world Sarcos Master Arm robot was carried out as an
empirical evaluation. As expected, the behavior in task space
is very similar for all three control laws; yet, they result in
very different joint-space behaviors due to the different cost
functions resulting from the different metrics of each control
law.

The major contribution of this paper is the unified frame-
work that we have developed. It allows a derivation of a
variety of previously known controllers, and promises easy
development of a host of novel ones, in particular control
laws with additional constraints. The particular controllers
reported in this paper were selected primarily for illustrat-
ing the applicability of this framework and demonstrating
its strength in unifying different control algorithms using a
common building principle. In future work, we will evalu-
ate how this framework can yield a variety of new control
laws for underactuated tasks and robots, for non-holonomic
robots and tasks, and for robots with flexible links and joints.
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